Прикрепленные к месту растения не имеют возможности укрываться от действия стихий. При этом растения нередко обладают очень крупными размерами и почти всегда ? огромной наружной поверхностью. Они подвергаются энергичному воздействию разнообразных механических нагрузок. К тому же многие нагрузки существуют десятки и сотни лет, то есть являются многократными.
Поэтому растения обладают поразительной способностью противостоять различного рода механическим нагрузкам. Тонкая соломина поддерживает тяжелый колос и листья, раскачивается при порывах ветра и не ломается.
Эта ржаная соломина долге время вызывала изумление ботаников. Ее сравнивали то с Эйфелевой башней, то с высокими дымовыми трубами. У соломины высота в 500 раз превышает диаметр при основании, а инженерные сооружения по этому показателю заметно проигрывают.
Целесообразность строения растений с точки зрения механики пытался объяснить еще Галилей. Его интересовал вопрос, как меняются пропорции тела организмов при значительном изменении их размеров. Много внимания этим вопросам уделяли Грю и Гук. Однако лишь два века спустя в 1874г немецкий ботаник Швенденер подробно рассмотрел распределение механических тканей в теле растения с точки зрения инженерной теории сопротивления материалов.
Было выдвинуто положение, утверждающее, что органы растений строятся в соответствии с принципами достижения прочности при экономной затрате материала.
Рассмотрим это положение более подробно.
Если стержень, испытываемый на прочность, положить на две опоры и нагрузить, то он прогнется. При этом его нижняя сторона будет растягиваться, то есть противодействовать разрыву. Наоборот, верхняя сторона будет противодействовать раздавливанию и сжиматься. Материал же находящийся в центре стержня останется в этом отношении нейтральным.
Таким образом, с точки зрения инженерным расчетов материал целесообразно сосредоточить в верхней и нижней частях стержней, где он будет выполнять наибольшую нагрузку. В центре же с целью экономии употребить лишь в той мере, чтобы предотвратить сжатие конструкции в поперечном направлении.
В соответствии с этими принципами инженеры установили наиболее экономичную и целесообразную конструкцию в виде двутавровой балки, применяемой для перекрытий.
Швенденер показал, что в листьях растений механические ткани по расположению очень напоминают двутавровые балки.
Стебель подвергается изгибам в различных направлениях и его можно сравнить с вертикальной трубой. В целях наибольшей экономии и прочности механические элементы должны быть отнесены к периферии такой конструкции. Действительно, в стеблях колленхима и склеренхима чаще всего располагаются непосредственно под эпидермой или близко к поверхности. Центр стебля обычно занят тонкостенной паренхимой или даже имеет обширную полость. Соломина злаков является типичной полой трубой.
Корню, окруженному почвой, не грозит опасность изгиба и излома. Корень выполняет другую механическую задачу, он «заякоривает» растения в почве и противодействует напряжениям, стремящимся выдернуть его, то есть противодействует разрыву. В соответствие с этим, механические ткани размещаются в центре корня.
Существенный вклад в рассматриваемую проблему внес отечественные ботаник В.Ф.Раздорский. Прежде всего Раздорский показал, что рассмотренные нами принципы распределения механических тканей в различных органах растения реализуются не столь однозначно. Дело в том, что растения повергаются воздействию механических нагрузок 2-х категорий, предъявляющих к ним совершенно противоположные требования, нагрузкам: 1) статическим и 2) динамическим.
К первым относится воздействие силы тяжести, собственного веса. Иногда статические нагрузки заметно увеличиваются, например, при оседании снега в ветвях крон.
К механическим факторам динамического (ударного) рода можно отнести порывы ветра, удары капель дождя и града.
Схема, предложенная Швенедером, в большей мере соответствует противодействию статическим нагрузкам.
Однако, с точки зрения динамики, как показал Раздорский, органы растения должны работать подобно пружинам изгиба, способным всякий раз возвращаться в исходное состояние после снятия нагрузки. Поэтому ствол дерева, раскачивающийся под тяжестью кроны, имеет конструкцию не полой жесткой трубы, а сплошной упругой пружины.
Кроме того, «инженерные требования» растений заметно меняются в ходе онтогенеза. У молодого проростка отчетливо проявляется периферическая тенденция развития механических тканей. В этой стадии растение тянется к свету и его задача возможно быстрее достигнуть максимальной высоты с возможной экономией материала.
Но, выбравшись к свету, растение начинает ветвиться и подвергается более сильному воздействию ветра и других динамических факторов. Соответственно меняется и распределение механических тканей: в большей степени укрепляется центр.
Раздорский же впервые обратил внимание на сходство растений с так называемыми комплексными сооружениями, к разряду которых главным образом относятся железобетонные конструкции.
В органах растения бетону соответствует основная масса мягких и тонкостенных тканей, а каркасу (арматуре) — механические тяжи.
Но растительные конструкции стоят на более высокой ступени, чем технические сооружения. Бетон разрушается уже при незначительном удлинении в 0,01%. Поэтому в железобетоне высокие механические качества железа используются далеко не полностью. В растительных конструкциях основная масса способна сильно деформироваться, ткани заполнения могут разрушиться лишь после разрыва тяжей арматуры. Поэтому в органах растений сопротивление арматуры используется полностью.
Кроме того, железо обладает свойством текучести, то есть железный прут либо вытягивается, либо пучится при сжатии, без возврата в исходное состояние. Растительная арматура текучестью не обладает.
Однако природа всегда многообразнее, чем наши суждения о ней. Некоторые растения строятся как бы наперекор инженерным принципам. Например, южно-африканские клейнни (Kleinia — из семейства сложноцветных) имеют стебли тонкие у основания и утолщающиеся на вершине. В результате ветви отламываются при малейшем ветре. Отломившиеся побеги служат для вегетативного размножения.