Вакуоль является еще одним организмом, типичным для растительных клеток.
Морфология вакуолярной системы очень разнообразна ? от мелких многочисленных пузырьков в меристематических клетках до крупной центральной вакуоли, занимающей до 90% объема в зрелых клетках.
Комплексное использование разнообразных методов: электронно-микроскопических и биохимических, позволило швейцарскому цитологу Ф. Матилю (Matile) разработать схему образования вакуолярной системы в растительных клетках.
Первичные элементы вакуолярной системы в виде небольших пузырьков ? провакуолей обнаруживаются уже в меристематических клетках. Современная электронная микроскопия позволяет проследить, что провакуоли могут возникать как расширения цистерн эндоплазматической сети, которые затем от нее отщепляются.
По мере роста клетки провакуоли сливаются друг с другом и вакуоль увеличивается в размерах. При этом формируется вакуолярная мембрана ? топопласт. Топопласт является производным мембран эндоплазматического ретикулума.
Возникший тонопласт может образовывать инвагинации, что приводит к включению в вакуоль цитоплазматического материала.
Пузырьки ? производные аппарата Гольджи ? не сливаются с мембраной вакуоли, а попадают в вакуоль в результате инкапсуляции их топопластом. Затем в полости вакуоли эти мембраны лизируются.
В последнее время появилось много электронно — микроскопических доказательств существования у растения автофагии (самопожирания). Участок цитоплазмы с различными компонентами окружается мембраной эндоплазматической сети. При этом возникает особая автофаговая вакуоль. Внутри вакуоли происходит переваривание ? лизис содержимого. Таким образом, образовавшаяся в результате автофагии вакуоль идентична лизосоме.
Состав вакуолярного сока
Вакуолярное содержимое ? клеточный сок ? представляет собой водный раствор самых разнообразных веществ. Он содержит:
- минеральные ионы;
- вещества первичного обмена: органические кислоты и их соли, углеводы, пектиновые соединения, белки,
- а также вещества вторичного происхождения ? фенолы, танины, флавоноиды, пигменты, алкалоиды.
Состав и консистенция клеточного сока значительно отличается от свойств протопласта. Клеточный сок обычно имеет слабокислую реакцию РН = 5.0 -6.5. Из органических кислот в клеточном соке наиболее часто встречаются лимонная, яблочная, янтарная и щавелевая. Особенно много этих кислот в клеточном соке незрелых плодов.
Алкалоиды ? обширная группа природных азотсодержащих соединений основного характера. Они относятся преимущественно к гетероциклическим соединениям с азотом в кольце. Алкалоиды имеют горький вкус. Часто алкалоиды обладают сильным фармакологическим действием. В настоящее время из растений выделено свыше 5000 алкалоидов.
Обычно концентрация алкалоидов в растениях невелика. Уже при содержании 1 — 3% растения считаются богатыми алкалоидами.
Многие алкалоиды сильные яды, другие обладают наркотическим или тонизирующим эффектом. Это обусловило их широкое применение в медицине и промышленности.
Так в медицинской практике нашли применение более 80 алкалоидов. С использованием алкалоидов связано производство тонизирующих напитков: чая, кофе, какао; а также табачная промышленность. Ряд алкалоидов применяют в сельском хозяйстве как инсектициды.
Биологические функции алкалоидов в растениях еще окончательно не выяснены. Их считают своеобразными стимуляторами и регуляторами биохимических процессов. Несомненна в некоторых случаях защитная функция алкалоидов у ядовитых растений, предохраняющая их от поедания.
Танины (дубильные вещества) ? это высокомолекулярные фенольные соединения, способные осаждать белки и алкалоиды. Дубильные вещества обладают вяжущим вкусом.
В природе немало растений, содержащих дубильные вещества. Особенно много их в двудольных растениях.
Лекарственное сырье, содержащее дубильные вещества, отличается бактерицидными свойствами. Танины используются также при отравлении тяжелыми металлами и растительными ядами ? алкалоидами.
Обладающие антисептическими свойствами дубильные вещества защищают растения от инфекции.
Гликозиды — сложные органические вещества, в состав которых входит какой — либо сахар и несахаристая часть ? агликон. Агликонами могут быть: спирты, альдегиды, фенолы и другие вещества.
Гликозиды играют в растениях весьма разнообразную роль. Некоторые исследователи определяют их как одну из форм отложения сахаров и считают их запасными питательными веществами. В пользу этого положения свидетельствует тот факт, что гликозиды легко расщепляются ферментами в присутствии воды.
Другие приписывают гликозидам защитное действие, предохраняющее растение от заболеваний и поедания.
Кроме того, гликозиды весьма активные биологические вещества. Они участвуют в процессах обмена, например, в построении аминокислот.
Широкое применение нашли гликозиды и в медицине, особенно гликозиды сердечной группы, стимулирующие сердечную деятельность.
У растений, как известно, запасные белки откладываются в вакуолях. Существует два типа запасных белковых соединений:
- растворимые альбумины
- плотные белковые комплексы фитина и глобулинов.
Обычно белки откладываются в особых запасающих вакуолях, получивших название алейроновых зерен.
В вакуолях часто накапливаются пигменты. Они относятся к группе гликозидов. Голубой, фиолетовый, пурпурный, темно-красный и пунцовый цвета придают растениям пигменты из группы антоцианов. В отличие от большинства других пигментов, антоцианы легко растворяются в воде и содержатся в клеточном соке. Они определяют красную и голубую окраску многих овощей, фруктов и цветов. Антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла.
При высоком содержании некоторых веществ в вакуолях могут образовываться кристаллы. Особенно часто встречаются кристаллы оксалата кальция, имеющие различную форму.
Топопласт
Мембрана, окружающая вакуоль, была названа известным генетиком Гуго Де Фризом ? топопластом.
Общая толщина топопласта несколько меньше, чем у плазмалеммы (до 8 нм), но больше, чем у мембран эндоплазматической сети.
Топопласт беднее стеролами и богаче фосфолипидами по сравнению с плазмалеммой. Высокое содержание фосфолипидов придает топопласту большую эластичность. Это имеет для вакуолей огромное значение. Топопласт способен выдерживать значительное давление клеточного сока, растягиваться и спадаться при изменении объема вакуоли.
Функции вакуолей
Вакуоли выполняют две основные функции ? 1) накопление запасных веществ и отбросов, т.е. они совмещают в себе функции склада и свалки внутри клетки; 2) поддержание тургора растительной клетки.
О запасных веществах я уже говорил, приводя характеристику химического состава клеточного сока.
С особенностями химического состава тесно связана и вторая функция вакуолей. Дело в том, что концентрация солей и сахаров в вакуолях обычно выше, чем в цитоплазме и окружающей среде. Поэтому вода свободно (по градиенту концентрации) поступает в вакуоли в результате осмоса. Поступающая вода оказывает давление на протопласт и клеточные стенки, вызывая напряженное состояние клетки ? тургор.
Тургор позволяет сохранять форму мягким и сочным необревесневшим органам. Увеличение размера клетки происходит за счет роста вакуоли. Потеря тургора в результате обезвоживания вызывает увядание растения.
Обезвоживание происходит не только при длительной нехватке воды. Если погрузить клетку в гипертонический раствор соли или сахара (концентрация которого выше, чем концентрация клеточного сока), то начинается осмотический выход воды из вакуоли. При этом тургор исчезает, протопласт сморщивается, отходит от клеточных стенок, наступает плазмолиз клетки.